Estimable functions of less than full rank linear model
نویسندگان
چکیده
منابع مشابه
On estimable and locally-estimable functions in the non-linear regression model
The non-linear regression model y = r;(i>) + e with an error vector £ having the zero mean and the covariance matrix SI (S unknown) is considered. Some sufficient conditions of estimability and local estimability of the function of the parameter i? are obtained, whilst the regularity of the model (i.e. the regularity of Jacobi matrix of the function t](d) is not required). Consequently, there a...
متن کاملA new multi-step ABS model to solve full row rank linear systems
ABS methods are direct iterative methods for solving linear systems of equations, where the i-th iteration satisfies the first i equations. Thus, a system of m equations is solved in at most m ABS iterates. In 2004 and 2007, two-step ABS methods were introduced in at most [((m+1))/2] steps to solve full row rank linear systems of equations. These methods consuming less space, are more compress ...
متن کاملThe Four Types of Estimable Functions
ESTIMABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 General Form of an Estimable Function . . . . . . . . . . . . . . . . . . . . 152 Introduction to Reduction Notation . . . . . . . . . . . . . . . . . . . . . . . 153 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Using Symbolic Notation . . . . . . . . . . . . . . . . . . . ...
متن کاملThe Four Types of Estimable Functions
ESTIMABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 General Form of an Estimable Function . . . . . . . . . . . . . . . . . . . . 160 Introduction to Reduction Notation . . . . . . . . . . . . . . . . . . . . . . . 161 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Using Symbolic Notation . . . . . . . . . . . . . . . . . . . ...
متن کاملRank-width is less than or equal to branch-width
We prove that the rank-width of the incidence graph of a graph G is either equal to or exactly one less than the branch-width of G, unless the maximum degree of G is 0 or 1. This implies that rank-width of a graph is less than or equal to branch-width of the graph unless the branch-width is 0. Moreover, this inequality is tight.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2013
ISSN: 1598-9402
DOI: 10.7465/jkdi.2013.24.2.333